An Approach for hesitant Node Classification in Overlapping Community Detection
نویسندگان
چکیده
Overlapping community detection has recently drawn much attention in the field of social network analysis. In this paper, we propose a notion of hesitant node (HN) in network with overlapping community structure. An HN is a special kind of node that contacts with multiple communities but the communication is not frequent or even accidental, thus its community structure is implicit and its classification is ambiguous. Besides, HNs are not rare to be found in networks and may even take up a large number of the nodes in the network, just like the long tail. They should either be classified into certain communities which would promote their development in the network or regarded as the hubs if they are the efficient junctions between different communities. Current approaches have difficulties in identifying and processing HNs. In this paper, a quantitative method based on the Density-Based Rough Set Model (DBRSM) is proposed by combining the advantages of density-based algorithms and rough set model. Our experiments on the real-world and synthetic datasets show the advancement of our approach. HNs are classified into communities which are more similar with them and the classification process enhances the modularity as well.
منابع مشابه
Detecting Overlapping Communities in Social Networks using Deep Learning
In network analysis, a community is typically considered of as a group of nodes with a great density of edges among themselves and a low density of edges relative to other network parts. Detecting a community structure is important in any network analysis task, especially for revealing patterns between specified nodes. There is a variety of approaches presented in the literature for overlapping...
متن کاملMining Overlapping Communities in Real-world Networks Based on Extended Modularity Gain
Detecting communities plays a vital role in studying group level patterns of a social network and it can be helpful in developing several recommendation systems such as movie recommendation, book recommendation, friend recommendation and so on. Most of the community detection algorithms can detect disjoint communities only, but in the real time scenario, a node can be a member of more than one ...
متن کاملIdentifying overlapping communities using multi-agent collective intelligence
The proposed algorithm in this research is based on the multi-agent particle swarm optimization as a collective intelligence due to the connection between several simple components which enables them to regulate their behavior and relationships with the rest of the group according to certain rules. As a result, self-organizing in collective activities can be seen. Community structure is crucial...
متن کاملA Framework for Optimal Attribute Evaluation and Selection in Hesitant Fuzzy Environment Based on Enhanced Ordered Weighted Entropy Approach for Medical Dataset
Background: In this paper, a generic hesitant fuzzy set (HFS) model for clustering various ECG beats according to weights of attributes is proposed. A comprehensive review of the electrocardiogram signal classification and segmentation methodologies indicates that algorithms which are able to effectively handle the nonstationary and uncertainty of the signals should be used for ECG analysis. Ex...
متن کاملOverlapping Community Detection in Social Networks Based on Stochastic Simulation
Community detection is a task of fundamental importance in social network analysis. Community structures enable us to discover the hidden interactions among the network entities and summarize the network information that can be applied in many applied domains such as bioinformatics, finance, e-commerce and forensic science. There exist a variety of methods for community detection based on diffe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014